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SUMMARY

We consider the numerical solution of the single-group, steady state, isotropic transport

equation. An analysis by means of the moment equations shows that a discrete ordinates SN

discretization in direction (angle) with a least squares finite element discretization in space does not

behave properly in the diffusion limit. A scaling of the SN equations is introduced so that the least

squares discretization has the correct diffusion limit. For the resulting discrete system a full

multigrid algorithm was developed.

1. INTRODUCTION

The single-group, steady state, isotropic form of the Boltzmann transport equation for one

dimensional slab geometry is given by ( Lewis and Miller [6] )

O_b(x, tt) + at_(x,#)-os_ f ¢(x,/d) d#'=q(x,#)
tt Ox -1 (1.1)

_(a,_t) = gl(tt) for _ > 0

¢(b,/_) =g2(#) for # < 0

where x E [a, b] and p E [-1, 1]. When at --* c_ and _,a=__. 1, which is the so called d(ff,._h,,_ limi/,

this equation becomes singular. The limit operator (I - P), where P denotes the operator

1 f l 1 ¢(x #')d/, has in its nullspace all functions that are independent of angle #.=
Moreover, in this limit transport theory transitions into diffusion theory in the following way.

Let E be a small parameter. Substituting at by _-_,as by (!e - ea_), where a_ is O(1), and scaling the

right hand side by e, equation (1.1) becomes

[ 0 11 (_) ] (1.2)+ - - P ¢(*,,) =

In addition, it is assumed that the external source q is independent of it. As a consequence of this

parameterization the diffusion limit is now equivalent to the limit ¢ --* 0. By expanding the solution

393

FilIOilO, tN_ PAGE BLANK .NOT RILMrr,D PA3E ,,[:.i_;,_,:.;.a_.L_ _LA;_K



of (1.2) as ,_ _ _..

= ¢°(x, + eJCJ(x, )
j=l

it can be shown ( Larsen [2] [3], Larsen, Morel and Miller [4] ) that some mean-free-paths away

from the boundary the zeroth order term, ¢°(x, #), is independent of # and is a solution of the

following diffusion equation

+ oa¢(x) = q(x). (1.3)3 dx 2

Thus, in the diffusion limit the solution of the transport equation will converge to the solution of a

diffusion equation.

For the numerical solution of (1.1) it is important to find a discretization that has the same

_ 1 ) the difference scheme for the transportproperty; i.e., for diffusive regimes ( at large, _,

equation must approximate a diffusion operator.

In the last two decades a large amount of work was dedicated to developing special

discretizations for the transport equation that have the correct behavior in the diffusion limit.

Among them are the Diamond Difference scheme [6], the Linear Discontinuous scheme [1], and the

Modified Linear Discontinuous scheme [5]. In the one-dimensional case their implementation is

straightforward, but their extension to higher dimensions is difficult.

In this paper we try to develop a general framework for finding discretizations for the transport

equation that have the correct behavior in the diffusion limit. In Section 2 we describe the discrete

ordinates SN discretization in angle and a least squares finite element discretization in space and

discuss why this simple approach does not behave properly in the diffusion limit. A scaling

technique for the transport equation is introduced in Section 3 that yields a least squares

discretization with the proper diffusion limit. In Section 4 we present numerical results based on a

full multigrid solver for the resulting discrete system. In Section 5 we draw conclusions and suggest

further applications of the scaling technique.

2. DISCRETIZATION

For the discretization in angle we use the standard discrete ordinates SN method. In the case of

one-dimensional Slab geometry, this is a Galerkin discretization with normalized Legendre

polynomials as basis. That means we are looking for a flux solution that has an expansion in the

first N normalized Legendre polynomials,

N-1

¢(x,#) = _ @(x) Pt(#). (2.1)
l=0

Since the normalized Legendre polynomials form an orthonormal basis for

L2([-1, 1]), the moment coefficients eL are given by the following integral, which can be
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written exactly as a sum by using a Gauss quadrature rule. We have

1
1

el(x) = _ f ¢(x,#)Pl(#)d#
-1

N

= Z_j ¢(x,,,) P,(,,).
j----1

Here #j denotes the Gauss quadrature points and wj denotes the Gauss quadrature weights.

By introducing the vector notation

__- (¢(x,_I),...,¢(x,_N))T; __-- (¢0(x),...,¢N_I(x)) T

(2.2)

and defining matrices T and f_ as

[T]ij -- Pi-I(Pj); f/_ diag(,_l,..., WN)

the relationship (2.1) and (2.2) between the .flux _ and the mom_nt.s

¢ = Tfl__
= TT__¢.

0__can be written as

(2.3)
(2.4)

As a result of the Galerkin discretization of (1.1) with the ansatz (2.1) we obtain the SN

equations

L_¢ ", .

#N

o_
+ I_ - (1 - e2o'a)R_ = e2q,

(2.5)

where

R = 0,--. ,1)_ (_,--,_N)

When we insert (2.4) into (2.5) and multiply by Tf_ from the left, we get the moment equations

M_ -

[ d_o ]Eboo_

ebo ° 1

0 ebl °

0

eb_ °

1

0

0

eb2 °
(I) : _'2 0 (2.6)

with j + 1

bj - vq(j + 1)=- 1

Normally, the computations are done in the flux representation (2.5) since in this representation

the boundary conditions are equal to simple Dirichlet boundary conditions. However, as we will see

later, the moment equations are very useful for theoretical insight. In the following the flux

operator is denoted by L and the moment operator by M.
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For the spatial discretization of the SN equations we use a least squares finite-element method

based on the functional
b

{l

and piecewise linear continuous elements 77k as basis functions for each component of _. In the

following S h denotes the finite dimensional space S h =_ span {r/k} and (sh) N denotes the space of

N-tuples whose elements are in S h.

The advantage of this approach is that a least squares discretization converts the SN equations,

which are a coupled system of first order equations, into a self-adjoint variational formuiafion.

Based on this variational formulation Multi-Level Projection Methods [7] can be applied in order to

guide the development of a multigrid solver for the resulting discrete system.

Unfortunately, this discretization does not behave correctly in the diffusion limit. In order to

explain this fact, we use the moment equations, since ¢0 = ¢ in the diffusion limit. Further, it is

easy to see by using the relationship (2.3), (2.4) and the identity T-rTf_ = I that

b

min / <f_(L_-q) L_-q>lnNdX__e(sh)_v -- , __
a

b

min f <MC-gl, M_-__>_l,,dx ,
__e(Sh),x - --

which justifieswhy itisalsopossibleto look at the leastsquares diseretizationof the moment

equations.

In the $2 ease with Ca = 0, forexample, a ]eastsquares diseretizationof the moment equations

results in the following discrete system

-g(,',7') . _(7',7) ¢0_ 3 0

' -_(7',73 + (7,7) e ,_(7,7) (¢_)= _(_,q0) '

where, for example, (7, 7) is a mass matrix and (7', 7) a stiffnes matrix with elements

and

b b

[(7,7)k,,=/ [(7',,)1,,,=-/
ax

= _. =: ....

(7',qo)= ..., ...
a

Forming the Schur complement we get the following equation for ¢oh

-if(7',7') - -g(7', 7) (7,_)+ -_W, 7') (7,,7')

=_===
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For sufficient small _ we have

I E2 ] -1 E2(_,,7)+-g-(,/,,/) =(,7,_)-'--g-(_,_)-'(_',¢)(_,_)-' +o(_"). (2.9)

Plugging (2.9)into (2.8) and dividing by e2 leads to

,,)-'(,,,,,')!_(,', _?('r/,
(.1)

+_-(,/,,7)(,7,,7)-1(,/,,7')(,7,,)-' (,7,,7')+o(:) }¢oh (2•10)

E 2
- (¢, _)(_,v)-'(¢, q0)+ o(d).

3

In the limit _ --_ 0, the solution approaches a valid discretization for the diffusion equation (1.3)

only if the term (.1) vanishes identically. For piecewise linear, continuous basis elements this term

does not cancel out and becomes the leading term in the equation. Consequently, in the diffusion

limit (2.10) is an approximation for ¢_ = 0, which results in a linear solution, connecting the

boundary conditions• In general, the term (.1) does not have the proper behavior unless the mass

matrix, (77, _?), is lumped, that is, replaced by a diagonal matrix•

3. SCALING

A closer look at the moment equations (2.6) shows that this system is unbalanced. There are

O(e2), O(e) entries as well as O(1) entries. The idea is to scale this system before the discretization.

First, let us consider the case aa _ 0. In our inner product the adjoint moment operator, when

homogeneous boundary conditions are assumed, is given by

_

:o-. }-ebo_ 0 0

-_bo£[ 1 -_b,£ 0
a 1 -_b2_0 -ebl -_

• • °..

Scaling the moment equations by

S-------

_O'u

E

E

and forming the normal equations results in

(3.1)

M*SM_ = e2M_Sgl ¢=_
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0 -$3bobl _ 0
_ E3 02(' eaa_ T_Zz

0

-_3b0bl

0

eb_ 02 _e3bl 2 a2e- a. _ _ 0 e3b b 02
- 1 2 b--_-z

0 e - e3(b_ + _2J_;_ 0

e3b b a2 , j.2_ 02
-- 1 2_-_"x O e -- 63(b 2 4- u3)_ir z

.

__.2

0

0
(3.2)

Note that (3.2) already has the correct limit equations for the moments on its diagonal and all first
order derivatives are eliminated.

Applying a Galerkin discretization to (3.2) and forming the Schur complement leads after

division by s 3 to the following discrete equation for ¢0h

{ ', )a,(r/, r/) + g(r/, r/) + O(e 2) ch = (r/, q_0)+ O(e2),

which is a valid diseretization of the corresponding diffusion equation (1.3) in the limit e --. 0.

When we define _bkd --_e3r/k(z), where _e3 denotes the j-th canonical unit vector of IR N, we can write

the Galerkin discretization of (3.2) as follows

b

Assuming homogeneous boundary conditions and splitting S = v/Sv/-S, (3.3) is equivalent to

b

I<.m o) o

b

4==_ min S (x/_(M_-_) v/S(M(I:>-_))_t,, dx,¢_.e(s',)x ' --
a

which is a least squares discretization of the moment equations, scaled by v/S. Consequently, a

least squares discretization of the moment equations, scaled by v/-S, also has the correct behavior in
the diffusion limit•

Notice that (3.2) has the proper behavior for any aa ¢ 0. The second equation contains 1-- on

both sides and yields the proper solution for ¢1 as a, _ 0.
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On the other hand, if aa = 0 the scaling (3.1) cannot be applied• In this case, scaling the

moment equations by

with

/1 )
".o

Ot _ £P_

and forming the normal equations results in

where p > 2

Ebo °

02
-e2 abob_

0

_2

-_abo_-_ -e2 abobl

0

b2_ o 20 a-s2a(b 2+ 2)

2 "
-e abl b2-_z_ 0

• ,

. • ° |

2 bJ. O2 ..
---COl lU2 _-_2

..,

1.,2", 0 2 •
o OX-

/ °)-¢3bo_-

= 0 "

A Galerkin discretization of (3.6) leads to the following discrete system

where

/ °)e3bo (r/', qo)

0

Aol -- (-_abo(rl,rf),_2abobl(rf , rf), O, . . .)

Alo

and All

/ _,(n, ,7)+ d@ + _:)(n',,f)

o

E2o,bl b,(_', _')

0

For sufficient small _ we have

- (_bo(n, n'),_bob_(n', n'),o,...) _

_,(,7,,7)+ _(b_ + b_)(n', ,f) o

o ,_(n, ,7)+ d,,(b_ + b_)

_-:abj bz (rf , rf) 0

"° "°

I 1 _ 1

i _(,7,_')-
Xi-__= )

".o

o ..
_ ab2 _. (n',n') -

0 "-

¢,(rl, r/) + ¢2a(b_ + b#) ".

+ Q1 + Q2 + 0(_22),

(3.4)

(3.5)

(3.6)

(3.7)
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O _ O(_-). this expansionwith Q1 = (Tr) and Q2 = Using when forming the Schur complement in

{e2ab](r/,, 'r/') - AolA_llAlo} ¢_

(3.7) we get

which after some algebra becomes

eab0(rf, q0) )
= -A01AI-_ 1 0

{g20_b2(Tf, t) _ ot2(T], ,)(TIc, _],)-I(T], 7_,) q_ O(g40_)} ¢h

= + (3.8)

Ee 2

Because of (3.5) we have _ --, 0, so that (3.8) is a valid discretization of the corresponding

diffusion equation in the diffusion limit. Using the same argument as above it follows that the least

squares discretization of the moment equations, scaled by v_0, also has the correct behavior in the

diffusion limit. - .......

As mentioned before, the computations are done in the flux representation. Therefore, we need

to transfer the scaling of the moment equations to a scaling for the SN equations. By means of the

relationship (2.3) and (2.4) it follows that a least squares discretization of the moment equations,

scaled by v_ is equivalent to a least squares discretization of the SN equations, scald by

TTv/-STgt = 1 R + v'_ (I- R).

A further multiplication by ev/T_ leads to the following scaling in the case era -¢ 0

R + ev/'_ (I- R ) . (3.9)

Similarly, in the case _a = 0 the least squares discretization of the moment equations, scaled by

V_0 with p = 4, is equivalent to a least squares discretization of the SN equations, scaled by

R +e 2 (I- R). (3.10)

In order to avoid an "if else" in the computaliions {t is possible to combine the scalings (3.9) and

(3.10) to .....

R+ (ev'-<+ (i R). (3.11)

4. NUMERICAL RESULTS

For the solution of the discrete system that results from a least squares discretization of the SN

equations scaled by (3.11), a full multigrid in space algorithm with

• standard coarsening in space by doubling the mesh width,

• /z-line red-black smoothing,
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Scalar Flux: ( mesh size h = 1.25 )
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Figure 4.1: Scalar flux solution of problem (4.1)

• full weighting,

• linear interpolation,

was developed. The full multigrid process starts by solving the problem on the coarsest level and

uses this solution as a starting guess for the next finer level, where a single V-cycle is performed.

Recursively, the solution process proceeds from coarser levels to finer levels by halving each grid

cell, using the coarse level solution as a starting guess and performing a single V-cycle on the next

finer mesh. This algorithm yields V-cycle convergence rates that are below 0.09. Therefore, by

performing one full multigrid V-cycle, a solution with an error on the order of the truncation error

is obtained (cf. [7]).

As test problem we used the same problem that was used by Larsen, Morel and Miller in [4],

which is shown below: N

#J--_x + lO0¢j - 100 _w_¢_ = 0.01
v=l • (4.1)

¢3(0)--0 for #y>0

_p3(10)=0 for #3<0

In our parametrization (1.2) this implies ¢ = 0.01, a_ = 0 and q = 1.0. The exact solution of the

corresponding diffusion equation is

3x2
¢(x) =-2 + 15x,
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Figure 4.2: Scalar flux solution of problem (4.2)

which is plotted in Figure 4.1 in solid. The least squares solution of the scaled SN equations,

computed by one full multigrid V-cycle, is shown in Figure 4.1 by the crosses. We see that this is a

very satisfactory result, especially when we take into consideration that we used a mesh size of 1.25,
which is much larger than e.

Finally, we mention that the least squares discretization of the SN equations without scaling will

give the zero solution for problem (4.1), indicated by the stars in Figure 4.1.

For the sake of completeness we present in Figure 4.2 the results for the test problem

(9¢j N 3 2 }

+ 100¢j- 99.99 y_ w_,_b,, = 0.01 \(1--_x + 15x_#J --_-x
/

Cj(0)=0 for #j >0

¢j(10)=0 for #j <0

(4.2)

where a_ = 1.0,E = 0.01,q = 1 - 3 2_x + 15x. The exact solution of the corresponding diffusion

equation is the same as for problem (4.1) and is again plotted in Figure 4.2 in solid. The least

squares solution, computed by 1 full multigrid V-Cycle is given in Figure 4.2 by the crosses and the

=
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solution for the least squares discretization of the SN equations without scaring is given by the stars.

5. CONCLUSIONS

From the analysis in Section 3 and the numerical results presented in Section 4, we conclude that

the least squares discretization of the scaled SN equations has the proper behavior in the diffusion

limit.

Further, we point out that the scaling can be used in the case of nonhomogeneous material,

where at or, equivalently, ¢ are discontinuous, because the equations are only scaled from the left

side so that no derivatives are applied to the scaling operator.

Adaptive refinement can be combined with the full multigrid solver in a natural way. Areas of

new refinement can be identified by examining the difference in the solution for two consecutive

grids. This is especially important for nonhomogeneous material, where interior layers may exist.

Numerical results show that with a slightly different scaling both a Galerkin finite element

formulation with piecewise linear elements and an Upwind Difference discretization of the SN

equations also have the correct diffusion limit. We believe that this scaling approach will result in a

general framework for the development of discretizations that posses the correct diffusion limit.

Finally, we hope to apply the scaling techniques developed here to higher dimensional problems.
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